
Mean steady granular force on a wall overflowed by free-surface gravity-driven dense flows

Thierry Faug,* Rémi Beguin, and Benoit Chanut
Cemagref, ETGR, 38402 St. Martin d’Hères, France

�Received 24 March 2009; published 27 August 2009�

We studied free-surface gravity-driven recirculating flows of cohesionless granular materials down a rough
inclined plane and overflowing a wall normal to the incoming flow and to the bottom. We performed two-
dimensional spherical particle discrete element simulations using a linear damped spring law between particles
with a Coulomb failure criterion. High-frequency force fluctuations were observed. This paper focuses on the
mean steady force exerted by the flow on the obstacle versus the macroscopic inertial number of the incoming
flow, where the inertial number measures the ratio between a macroscopic deformation time scale and an
inertial time scale. A triangular stagnant zone is formed upstream of the obstacle and sharply increases the
mean force at low incoming inertial numbers. A simple hydrodynamic model based on depth-averaged mo-
mentum conservation is proposed. This analytical model predicts the numerical data fairly well and allows us
to quantify the different contributions to the mean force on the wall. Beyond this model, our study provides an
example of the ability of simple hydrodynamic approaches to describe the macroscopic behavior of an assem-
bly of discrete particles not only in terms of kinematics but also in terms of forces.
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I. INTRODUCTION

The importance of granular materials in geophysics and in
various industrial processes has resulted in extended research
on granular flows at the frontier between physics, soil me-
chanics, and fluid mechanics. Flows around obstacles and the
force those granular flows are able to exert on the obstacle
are important issues when applied to storage and conveying
bulk solids �1� and also in geophysical flows �2–4�. Granular
drag on objects was approached by the pioneering work of
Wieghardt �5,6�, who provided an early systematic experi-
mental and analytical study of granular flows around im-
mersed objects. In those free-surface flows, he showed the
drag force depended relatively little on velocity, and he ob-
served a pile-up in front of the immersed object as well as
depression of the surface in the wake. A recent experimental
study on dense granular flows around an immersed cylinder
in a vertical chute �7� showed that the mean drag is indepen-
dent of the mean upstream velocity. The subject also contrib-
uted experiments on two-dimensional �2D� flows in a verti-
cal bin around various inserts �1�. The authors recorded
velocity contours and observed stagnant zones in front of the
inserts.

Many recent studies have focused on the drag force on
small obstacles such as cylinders in the case of rapid-dilute-
granular flows �8,9�, including interstitial gas effects �10,11�.
In the dilute regime, the force is proportional to the square of
the incoming velocity as predicted from kinetic theory for
granular gas. The importance of shock waves formed in front
of the obstacle has been shown for this rapid regime �12,13�
and has been the subject of valuable recent studies �14–20�.

The quasistatic regime was also investigated by
Wieghardt �5,6�. A series of recent studies examined drag
forces on immersed obstacles in a rotating granular bed at
very low velocities �21–23�. Experimental measurements

showed that the drag force is linearly dependent on the cyl-
inder diameter, quadratically dependent on the depth of in-
sertion, and independent of velocity �21�. The effect of ob-
stacle shape on drag force and its influence on jamming
behavior has been analyzed �23� as well as stick-slip fluctua-
tions in granular drag �22�. All these studies refer to horizon-
tal motion and showed that the average pressure is scaled as
the immersion depth. A recent study investigated the average
drag forces for obstacles slowly plunging into and withdraw-
ing from shallow beds of different granular materials and
showed that the average pressure is scaled as the immersion
depth exhibiting a power-law behavior rather than a linear
behavior �24�.

Since the studies of Wieghardt �5� and Tuzun and Ned-
derman �1�, little has been studied on the drag of dense
granular flows and the effects of the stagnant zone observed
in front of the obstacle. In the present paper, dense granular
flows will systematically refer to assemblies of grains mov-
ing at higher velocity than the grains in the quasistatic re-
gime mentioned just above but at lower velocity than the
grains in the rapid dilute regime. This regime refers to the
so-called granular liquid regime mentioned in �25�. A typi-
cally sized roughness close to the diameter of the flowing
grains is a condition to obtain this type of dense regime. In
the dense granular regime, when the obstacle has a typical
size close to the flow depth, large stagnant zones or dead
zones are able to form in front of the obstruction, while
grains that are non trapped inside the dead zone continue to
flow around the obstacle. These stagnant zones observed in
the dense regime are not accompanied by a granular jump
�large discontinuity in flow depth and velocity� as described
earlier for rapid flows on smooth beds �26–29�. Furthermore,
free-surface curvatures and large flow-depth gradients are
observed in the vicinity of the obstacle. All these conditions
result in a mean force on the obstacle that cannot be ex-
pressed as �i� a simple function of the incoming depth-
averaged velocity of the flow, as is usually observed for
granular flows around small immersed obstacles in the dilute
regime �8,9,12,13�, or �ii� a simple function of a depth of*thierry.faug@cemagref.fr
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insertion �equal to the flow depth when the small object is
located at the base of the flow� in the quasistatic regime
�21,23,24,30�.

This paper focuses on 2D free-surface gravity-driven
flows of dense granular materials down an inclined plane and
overflowing a wall normal to the bottom. These flows corre-
spond to a flow geometry typically encountered in geophys-
ical flows when avalanches overtop protection dams �4�. A
roughly triangular dead zone, whose length greatly depends
on the slope inclination, is formed upstream of the wall and
largely influences the mean force on the wall. We investi-
gated this mean force using discrete numerical simulations
combined with a hydrodynamic modeling approach. The nu-
merical simulations method and results are presented first.
Then we describe a simple hydrodynamic analytical model
showing that the mean force is the sum of many contribu-
tions: the weight of the granular material �motionless grains
inside the dead zone and moving grains above�, the incoming
momentum force, the incident pressure force, and the basal
friction force inside the dead zone. Based on simple argu-
ments to calibrate the free parameters, the predictions from
the proposed analytical model are successfully compared to
numerical results.

II. DISCRETE NUMERICAL SIMULATIONS

A. Numerical methods

1. Simulation method and contact law

Numerical simulations are carried out using the
molecular-dynamics method as introduced by Cundall �31�
and largely used to simulate dense granular flows �see, for
example, �32–34��. We defined the normal contact force as
the sum of two contributions, an elastic one Ne �spring�, and
a viscous one Nv �dashpot�. In the simplest case used here,
the normal elastic force Nij

e is assumed to depend linearly on
the overlap �ij �the displacement of the spring�: Nij

e =kn�ij,
where kn is the normal stiffness. The dashpot contributes a
normal dissipative force Nv proportional to the time deriva-

tive of the overlap: Nij
v =Cij�̇ij, where Cij is a normal damp-

ing coefficient that may be related to a coefficient restitution
e in a binary collision of cohesionless grains �35,36�. The
sum of both contributions Nij is restricted to being repulsive,
i.e., tensile normal forces are not allowed, as the particles are
assumed to be noncohesive. Finally, the normal contact force

may be expressed as follows: Nij =kn�ij +Cij�̇ij. Two micro-
scopic parameters are then needed: the normal stiffness kn
and the damping coefficient Cij �or restitution coefficient e�
to define the normal intergranular force. The tangential com-
ponent Tij of the contact force is implemented in terms of a
linear spring Tij =ktuij, where kt is the tangential stiffness and
uij is the displacement of the spring. Tij is restricted to abso-
lute values smaller than �Nij

e according to friction between
grains described by a Coulomb condition enforced with the
sole elastic part of the normal force. Here the local particle
friction parameter � is introduced. When this threshold is
reached, the tangential relative motion is regarded as sliding
with the sliding friction �Nij

e �directed opposite the tangen-
tial relative velocity�. Finally the tangential contact force

may be expressed as follows: Tij =min��Nij
e ,ktuij�. Two mi-

croscopic parameters are then needed: the tangential stiffness
kt and the local particle friction parameter � to define the
tangential intergranular force.

2. Microscopic parameters

The simulated system is an assembly of spheres of aver-
age diameter d and density �P �average mass m=1 /6�P�d3�.
A small polydispersity ��10% in size� is introduced to
prevent crystallization. The average particle diameter is
d=1 mm and the particle density is �P=2450 kg m−3 corre-
sponding to the glass material. The normal stiffness kn is
calculated from the Young’s modulus E �37�: kn�Ed. The
Young’s modulus of the glass material is E=69 GPa, which
gives kn=6.9�107 N m−1 but kn was reduced to
kn=104 N m−1 with respect to the limit of rigid grains �no
influence of the stiffness above this limit�, in order to de-
crease the calculation time.

It has been previously shown that the dimensionless num-
ber N1=kn / ��d3�̇2� �where �̇ is the shear rate and � the den-
sity� has to be greater than 104 in order to conclude that we
are in the limit where grains behave as if they are perfectly
stiff �36�. N1 can be thought as the inverse of the square of
the ratio between the shear velocity u�̇= �̇d and the sound
velocity cs=�k / ��d� �36�. The condition N1	104 gives
u�̇ /cs
10−2 �condition 1�. This condition 1 controls the
overlap generated by flow inertia and gives the following
condition on the shear rate �with kn=104 N m−1 and a den-
sity �=��P, where �=0.55 is a typical volume fraction�:
�̇
860 s−1. The dense granular flows investigated in this
paper occur below this limiting value of the shear rate �as
well as many similar experimental granular flows �38��. We
also have to consider the overlap generated by quasistatic
mechanisms such as the compression of force chains. Simi-
larly to the number N1, we can define the dimensionless
number N2=kn / �Pd� for spherical grains, which can be in-
terpreted as the inverse of the square of the ratio between the
characteristic velocity of grains rearrangement uP=�P /�
�where P is the pressure� and the sound velocity cs. By anal-
ogy to the condition 1, the condition N2	104, which gives
uP /cs
10−2, has to be respected �condition 2�. For dense
granular flows, the typical pressure level is maximum at the
bottom and may be approximated by the hydrostatic pressure
P��gh. The condition 2 gives the following condition on
the flow depth �with kn=104 N m−1�: h
75d. The granular
flows investigated in the paper are below this limiting value
of the flow depth �thereafter, in Fig. 1�b�, are provided the
typical values of the flow depth�. Furthermore, recent dis-
crete simulations on dense granular flows showed that the
effect of variations in kn is minimal as long as
kn	2�105mg /d �41�. With our values for d and m, it gives
kn	2570 N m−1, which is also compatible with the chosen
value for kn.

In the rigid grains limit, it has been shown that the mac-
roscale behavior does not depend on � �except for friction-
less grains �=0� and e �except for the extreme values e=0
and e=1� for plane shear flows without gravity �34�. It has
also been shown that the flow behavior �bulk density and
velocity profile� depends little on the local particle friction if
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�	0.5 for steady flows down a rough inclined plane �see
Fig. 9 in �32��. In our simulations, we used �=0.5 corre-
sponding to a typical value for glass beads. The restitution
coefficient e was also shown to only slightly influence the
bulk density and the velocity profile of steady dense granular
flows down rough inclined planes if e
0.9 �see Fig. 10 in
�32��. In the dense granular regime, the macroscopic flow
quantities are known to be almost insensitive to the coeffi-
cient of restitution e �25,40�. In our simulations, we chose
e=0.5. It has also been shown that the kt /kn ratio has a very
small influence �32,36�. Here we used kt /kn=1 /2, which
gives kt=5�103 N m−1. The commercial particle flow code
was used here �PFC2D version 3.0 �42��. In our simulations,
the time step was kept constant at 4 10−6 s, which guaran-
teed the stability of our calculations.

3. Flow geometry

We defined a channel of length Lc=1700d and a reservoir
of length Lr=150d. The roughness of the bottom was made
with grains of a mean diameter d=1 mm with the same
properties as the grains in motion. The channel was con-
stantly fed by releasing grains into the reservoir. Grains
moved out of the reservoir by an aperture of constant height
Hr=35d �see inset in Fig. 1�a��. After a certain simulation
time, the imposed height Hr at the exit of the channel led to
a constant mass flow rate. We investigated two types of flow
in a large range of slope inclinations �16° ��32°�: �i�
flows with no obstacles in order to characterize our flows
regarding the existing literature reporting dense granular
flows down rough inclined planes and �ii� flows overflowing
a vertical wall normal to the bottom and located at a distance
900d from the exit of the reservoir. The following section
presents the results.

B. Numerical results

1. Control flows without an obstacle

Dense granular flows down rough inclined planes have
been thoroughly studied and an overview of recent progress
and remaining unanswered questions can be found in
�25,40�. This section reports a summary of the main results
obtained from our discrete simulations of control flows with
no obstacles. We show that these results are compatible with
previous reports in the literature �40�. The existence of
steady and uniform flows in a large range of slope
inclinations �min ,max� has been shown for dense
granular flows down a rough inclined plane �32,40,43�.
The function hstop�� has been defined as the thickness
of the granular material left by a steady and uniform flow at
slope inclination  and can be measured. The angle max is
the angle for which no grains are able to stay on the
inclined plane �hstop=0�, and the angle min is the
angle for which hstop tends toward � �no flow�. We deter-
mined the function hstop�� numerically, which is depicted in
Fig. 1�a�. The curve can be fitted by the function
hstop��=Bd��max−� / �−min��, where B is a constant de-
pending on material properties �40�. We found the following
values: min�14°, max�24°, and B=2.3. It is found to be in

(b)

(a)

(c)

FIG. 1. �a� Thickness hstop normalized by d versus the
slope inclination : open squares represent our numerical data,
plain squares represent data from �39�, reported also in �40�,
and the continuous line gives the fitted function
hstop�� /d=B��max−� / �−min�� with min=24°, min=14°, and
B=2.3. Inset: sketch of the simulated recirculation system. �b� Ve-
locity profiles measured at x /d=900 for control flows at different
slope inclinations; the dotted lines give the Bagnold profiles. �c�
Inertial number I versus normalized distance x /d for different slope
inclinations.
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agreement with previous data on 2D flows �32,39,40�.
A single dimensionless number called the inertial number

has been defined and may be interpreted as the ratio �40�
between �i� a microscopic time scale d /�P /�P, which repre-
sents the time it takes for a particle of density �P to fall in a
hole of size d under the pressure P giving the typical time
scale of rearrangements, and �ii� a macroscopic time scale
1 / �̇ linked to the mean deformation ��̇ is the local shear
rate�. I is the square root of the Savage number �44� or the
Coulomb number �45,46� previously introduced in the litera-
ture. The averaged inertial number I may be estimated from
depth-averaged velocity and thickness of the flows assuming
a Bagnold-like velocity profile �40�:

I =
5ūd

h3/2�2g cos 
. �1�

Figure 1�b� shows the velocity profiles obtained at differ-
ent slope inclinations and at the position x /d=900. The Bag-
nold profiles �shown in dash lines in Fig. 1�b�� roughly fit the
numerical data except at the base of the flow as it has been
previously reported �40�. Figure 1�c� shows the macroscopic
inertial number I, calculated from Eq. �1�, along the distance
x from the reservoir. For steady and uniform flows, we can
define a unique value of I far enough from the reservoir.
Above max, we observed a continuous increase in the iner-
tial number I along showing that the flows are nonuniform
flows. For these gradually accelerated flows, we defined the
inertial number I at two positions: x /d=900, corresponding
to the location of the wall in the second set of simulations,
and x /d=1500 �maximum position up to which we took
measurements because for x /d	1500 the flow properties
were influenced by the boundary limit due to the end of the
inclined plane at x /d=1700�.

The robust scaling has been shown for the variation in the
basal friction coefficient �� versus the inertial number I for
plane shear flows �34�:

�� = �min
� + bI , �2�

where �min
� =tan min and b is a constant. Another scaling is

proposed in the literature for ���I� for inclined planes
�47,48�:

�� = �min
� +

��

I0/I + 1
, �3�

where ��=tan max−�min
� and I0 is a constant typically

equal to 0.3 for glass beads.
The depth-averaged equations, introduced by �49� and re-

cently revisited �25,50� in the context of shallow granular
flows down an inclined plane, allow us to estimate the effec-
tive friction coefficient ��. The acceleration is balanced by
the gravity parallel to the plane, the tangential stress between
the fixed bottom and the flowing layer, and a pressure force
related to the thickness gradient �25,49,50�. The momentum
balance is reduced to the following equation in steady 2D
flow conditions:

�
�hū2

�x
= �tan  − �� − k

�h

�x
�gh cos  . �4�

The � factor, in the acceleration term, is related to the
velocity profile and is defined by 1

h	0
hu2�y�dy

=�� 1
h	0

hu�y�dy�2. It is generally taken to be equal to 1, which
corresponds to the exact value for plug flows �49�. It can be
calculated provided an assumption on the shape of the veloc-
ity profile: �=4 /3 for linear velocity profiles and �=5 /4 for
Bagnold velocity profiles �51�. The k factor, in the thickness
gradient term, is the ratio of the normal stress �xx to the
normal stress �yy, classically introduced for dense granular
flows �49,50�. For steady dense granular flows, k can be cho-
sen equal to 1 �isotropic fluidlike behavior� as shown by
previous studies �32�. From Eq. �4�, we could estimate the
effective friction coefficient at a given position x0 /d:

���x0� 
 tan  − ��h

�x
�

x=x0

−
�

gh cos 
���hū2�

�x
�

x=x0

.

�5�

We performed our calculations with �=1,
�x=200d, �h=hx=x0−100d−hx=x0+100d, and ��hū2�
= �hū2�x=x0−100d− �hū2�x=x0+100d. Figure 2 shows the variation
in the effective friction coefficient �� versus the macroscopic
inertial number I for different positions x /d. All the data
collapse into a single curve whatever the position x /d and
the slope, which shows that the existence of a unique rela-
tionship between �� and I is still valid for accelerating flows
investigated here. We also reported the laws from Eq. �2�
with b=0.5 and from Eq. �3�. These laws should be valid for
steady and uniform flows when tan =��. This is the case
for Eq. �2� which predicts fairly well the data for 
max
�low I values� but fails for larger values of  �large I values�.
Equation �3� was shown to be in good qualitative agreement
with the data in the sense it predicts the asymptotic satura-
tion of the friction at large values of I���→�max�. We re-
ported the equation prediction for three values of max: 24°,
26°, and 28°. Results show that a low value of max gives a
good prediction at low I but fails in predicting the saturation
friction, whereas a higher max gives a relevant prediction at
large I but fails in predicting the data at low I. The inset
graph in Fig. 2 gives �� versus I with �=5 /4 for compari-
son.

Figure 2�b� shows the mean volume fraction �̄3D versus
the inertial number I for different positions x /d. Our simula-
tions were performed in two dimensions with spherical beads
�no disks�. The mean volume fraction �̄3D was calculated
from the mean volume fraction �̄2D assuming �̄3D= 2

3 �̄2D if
we compare a sphere of diameter d included in a cube of
identical size d to a disk of diameter d included in a square
of size d. Again, all the data are shown to collapse into a
single curve whatever the position x /d and the slope, which
supports the existence of a unique relationship between �
and I. Figure 2�b� presents a comparison of the results to the
following law proposed in the literature �25,48�:

�̄ = �̄max + ��̄min − �̄max�I . �6�

A good agreement is found for �max �steady and uni-
form flows� and deviation from this law for �max �slightly
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non uniform flows� if we consider typical values

�̄max=0.55 and �̄min=0.4.
In conclusion, steady and uniform flows ��max�24°�

as well as slightly nonuniform flows ��max� were inves-
tigated and characterized with regards to recent insights on
dense granular flows. We also measured the velocity and
density profiles over depth and found good agreement with
previously published data on dense granular flows down
rough inclined planes �25,32,40�, i.e., Bagnold-like velocity
profiles and a constant volume fraction. We carried out a
second set of numerical simulations for which we added a
vertical wall normal to the bottom at the location x /d=900,
as depicted in Fig. 3. The obstacle height H was systemati-
cally taken equal to the flow depth h1 of the control flow:
H /h1=1 �for �max, h1 was defined at the position
x /d=900�. The following analyzes the force on the wall re-
sulting from these dense granular flows.

2. Mean force on the obstacle

Figure 4�a� shows an example of how the force exerted on
the obstacle evolves over a 0.4 s time-duration window. The
force is characterized by high-frequency fluctuations with
possible high amplitudes. We systematically observed a fluc-
tuating chain forces network formed inside the dead zone
being the source of the high-frequency fluctuations. Force
chains in granular media are highly fluctuating physical pro-
cesses that have been widely studied in the literature �see, for
example, �52–56��. This issue is not discussed in detail in
this paper. The total normal force Fn�t� on the wall, at a
given time t, is the sum of each force fn

i �t� mobilized at the
contact points between the wall and each bead i in contact
with the wall:

Fn�t� = 
i=1,. . .,n

fn
i �t� , �7�

where n is the number of beads in contact with the wall at the
given time t. The number n is closely approximated by the
ratio between the obstacle height and the mean particle di-
ameter: n�H /d. When a bead j in contact with the wall is
trapped in a relatively long force chain, the force fn

i=j in-
creases substantially and largely contributes to the total force
Fn�t�, which gives a force peak. Such a mechanism can be
illustrated in Fig. 4�b� which gives the change over time of
the ratio of the force fn

i=imax to the total normal force Fn�t�,
where fn

i=imax is the instantaneous force which corresponds to
the bead exerting the maximum force on the wall. When the
ratio fn

i=imax /Fn�t� is close or equal to one �point A in Fig.
4�b��, it means that the total force is mainly due only one
bead in contact with the wall and trapped in a force chain.
Inversely, when no bead in contact with the wall is trapped in
a force chain, each bead has a similar contribution to the
total force Fn�t� and the ratio fn

i=imax /Fn�t� is lower �point B
in Fig. 4�b��.

We represented the moving average over 0.02 and 0.1 s in
Fig. 4�a�. The graph indicates that the moving average tends
toward a non-time-dependent hydrodynamic force, one of

(b)

(a)

FIG. 2. �a� Coefficient of effective friction �� versus the inertial
number I: our numerical data �with �=1� for different x /d are com-
pared to the predictions from Eq. �2� with b=0.5 and Eq. �3� with
I0=0.3 considering three values of max: 24°, 26°, and 28°; inset
graph: numerical data with �=1 and �=5 /4. �b� Depth-averaged
volume fraction �̄ versus the inertial number I: our numerical data
are compared to the linear law from Eq. �6� with �̄max=0.55 and
�̄min=0.4.

FIG. 3. Typical picture of a numerical simulation showing the
dead zone formed upstream of the wall overflowed by a granular
flow �example for =24°� at a given time �instantaneous picture�.
We distinguished grains of individual velocity v smaller �black
grains� and greater �white grains� than a threshold velocity vt,
which gives the shape of the so-called “dead zone.” The threshold
velocity was typically taken equal to 5% of the depth-averaged
velocity of the granular flow in the absence of obstacle: vt�0.05ū.
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the main points of the present paper. Figure 4�c� shows the
mean steady normal force Fn on the wall versus the slope
inclination . The results show that the normal force in-
creases sharply on low slope inclinations �low value of I�
when decreasing the slope inclination. The dramatic increase
in force when  is close to min is proof of a transition toward
a quasistatic regime and the flow stopping. The dead zone
formed upstream of the obstacle tends to move upward in-
definitely and the mean force is greatly increased by the
weight of the granular material stored upstream of the wall.
The mean force is quasiconstant at intermediate slope incli-
nations. The last data point seems to show a slight increase in
force at the highest slope inclination which was investigated
�highest value of I�. Here we have a transition toward a rapid
or inertial regime for which the force is mainly controlled by
the flow velocity. These regimes are also visible in the inset
in Fig. 4�c�, which shows the rescaled normal force Fn /F0
versus the inertial number I, where F0 is a typical flow force
equal to F0

dyn= 1
�	0

h1 1
2�1u2�y�dy= 1

2�1u1
2h1 �dynamic contribu-

tion� or F0
hydro=	0

h1�1g�h−y�cos dy= 1
2�1gh1

2 cos  �hydro-
static contribution�. u1=	0

h1u�y�dy is the mean velocity over
flow depth h1 of the incoming flow of density �1. The fol-
lowing section proposes a hydrodynamic model to describe
this behavior in greater detail and quantify the different con-
tributions to the mean force in each regime defined by the
inertial number I.

III. HYDRODYNAMIC MODELING

A. Momentum conservation in a control volume

In a steady regime, the variation in momentum in a fixed
control volume of fluid V is equal to the sum of the volume
forces �the weight of the granular material here� and of the
external forces resulting from the elements in contact with
the control volume:

�
S

�u�u · n�dS = − �
S

pndS + �
S

� · ndS +� �
V

�gdV .

�8�

We use a single integral symbol for external forces �	S�
and a double integral symbol for the volume forces �		V�
because we consider variables per unit width �in N m−1�. n is
the unit vector normal to the surface S of the control volume
V, � is the density, u is the velocity, g is the gravity accel-
eration, p is the pressure, and � is the stress tensor. We apply
the momentum conservation on the control volume V0 de-
fined on the schematic view given in Fig. 5. If we consider
sections �S1� and �S2� defined in Fig. 5, Eq. �8� gives

�Qm
0 �u2 + u1� = P + P0 + P1 + P2 + R − F , �9�

where u1= 1
h1

	S1
udS and u2= 1

h2
	S2

udS are the mean veloci-
ties at sections �S1� and �S2� defined in Fig. 5 and also shown
in Fig. 3. S1 is the section normal to the bottom and the
incoming flow at the position where the obstacle does not
create disturbance in the upstream incoming flow. S2 is the
section normal to the outgoing flow at the top of the obstacle
and making an angle � with the bottom. Mass flow rate

(a)

(b)

(c)

FIG. 4. �a� Change over time for the instantaneous normal �dark
gray� and tangential �light gray� components of the force per unit
width exerted on the obstacle: example for =28°. Lines �continu-
ous line for Fn and dotted line for Ft� represent the time-averaged
values. �b� Change over time of the ratio of the instantaneous force
fn
i=imax to the instantaneous normal force Fn�t�, where fn

i=imax is due to
the bead exerting the maximum force among all the beads in con-
tact with the wall. �c� Time-averaged normal force Fn per unit of
width versus the slope inclination . Inset: rescaled normal force
Fn /F0 versus I, with F0=F0

dyn= 1
2�1u1

2h1 and F0=F0
hydro

= 1
2�1gh1

2 cos . The vertical dashed gray line represents the transi-
tion at =max.
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conservation gives Qm
0 =�1u1h1=�2u2h2, where Qm

0 is the
mass flow rate, h1 is the thickness of the incoming flow at
section �S1�, �1 is its density, and h2 is the thickness of the
outgoing flow at section �S2� and �2 its density. Let us define
all the forces involved in momentum conservation. P is the
weight of the control volume: Px=�0gV0 sin  �component
of P in the x-axis direction� and Py =−�0gV0 cos  �compo-
nent of P in the y-axis direction�. �0 is the mean density of
the granular material in the control volume assumed to be
close to the incoming flow density: �0��1. The force P0 due
to the interstitial fluid �air� at the free surface of the flow are
ignored: P0�0. The pressure force P1 due to the incoming
fluid on section �S1� is parallel to the bottom: P1x

= 1
2k�1gh1 cos  �P1y =0�, where k is the earth pressure coef-

ficient classically introduced for dense granular flows
�49,50�. The pressure force P2 resulting from the outgoing
fluid on section �S2� is assumed to be negligible �P2�0�.
This assumption is argued by the presence of a flying and
dilute granular jet �downstream the wall� which does not
exert any pressure on the more dense incoming flow at sec-
tion �S2� �zero pressure boundary condition�. The reaction of
the bottom R has two components. Ry is the y-axis compo-
nent and Rx is the x-axis component corresponding to the
mean basal friction force assumed to be proportional to the
normal force �y component of the weight of the volume V0�:
Rx=�zmPy. We will discuss this assumption in detail and the
meaning of the mean friction �zm later in the paper. F is the
mean force exerted on the wall by the granular flow.

Numerical simulations showed a curvature of the free-
surface of the flow in the zone of influence of the obstacle.
Here, for the sake of simplicity, we assume that the free-
surface can be modeled by a straight line between sections
�S1� and �S2� in Fig. 5. The disturbance created by the ob-
stacle in the flow is characterized by a free-surface inclined
at an angle �sl and the dead zone inclined at an angle �zm

with the bottom �see Fig. 5�. This assumption and the rela-
tion H=h1 allow us to estimate the volume V0:

V0 =
1

2
h1��2 +

�h

cos �
�L − h1�h

2 tan �� , �10�

where L is the upstream distance at which the flow is no
longer influenced by the obstacle �i.e., the distance between
the section S1 and the obstacle: see Fig. 5 and also the simu-
lation picture in Fig. 3� and �h=h2 /h1 is the ratio between
the flow depths in sections �S1� and �S2�. The obstacle’s in-
fluence zone can be determined by the following equation:

L =
h1�h

�cos ���tan �sl�
. �11�

The projection of momentum conservation on the x axis
and y axis gives the following equations for Fn and Ft:

Fn = Fdyn + Fpressure + Fweight−friction, �12�

Ft = − ��1u1
2h1�u sin � − �1gV0 cos  + Ry , �13�

with

Fdyn = ��1u1
2h1�1 − �u cos �� , �14�

Fpressure =
1

2
k�1gh1

2 cos  , �15�

Fweight−friction = �1gV0�sin  − �zm cos � , �16�

where �u=u2 /u1 represents the variation in mean flow veloc-
ity between sections �S1� and �S2�. As mentioned above,
mass flow rate conservation gives Qm

0 =�1u1h1=�2u2h2. As-
suming that the density is unchanged ��2��1�, we have
�u�1 /�h. The following proposes simple empirical equa-
tions to close the model and determine the angles �sl, �zm,
and � �defined in Fig. 5�, the basal friction �zm, and the
velocity ratio �u.

B. Free-surface and dead zone angles

The more inclined the slope is, the higher the free-surface
angle upstream of the wall. Therefore, we can assume that
�sl is a simple affine function of the slope inclination
 :�sl=a+b, where a and b are empirical coefficients to be
determined. Two asymptotic conditions may be considered
for each incoming regime: �i� the uniform dense regime and
�ii� the nonuniform more dilute regime. It gives different
values of the parameters a and b for each regime. We note a1
and b1 �respectively, a2 and b2� the coefficients in the dense
�respectively dilute� regime. First, let us consider the incom-
ing dense uniform regime for 
max. When =min, no
steady regime is possible. The influence zone propagates in-
creasingly upstream of the obstacle �L→��, which corre-
sponds to a value of �sl close to zero. This asymptotic con-
dition gives: 0=a1min+b1, which implies �sl=a1�−min�.
When increasing the inclination angle , the angle �sl in-
creases until it reaches the critical value �sl

c for =max,
which gives the asymptotic condition: �sl

c =a1�max−min�.

FIG. 5. Sketch of the control volume V0 �hatched zone� inside
which the momentum conservation is applied. h1 and u1 are flow
depth and mean velocity of the incoming flow at section �S1�. The
section �S1� is normal to the bottom and represents the beginning of
the influence’s zone of the obstacle. The wall height is H and L is
the length of the obstacle’s influence zone, i.e., the distance between
the section �S1� and the foot of the obstacle. h2 and u2 are flow
depth and mean velocity of the flow at section �S2�. The section �S2�
is normal to the main direction of the outgoing flow of velocity u2.
We defined the angle � between u2 and the bottom.  is the bottom
slope. Assuming a triangular shape for the dead zone, we also de-
fined �zm as the angle of the dead zone with the bottom and �sl as
the angle of the free surface �inside V0� with the bottom.
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Second, we consider the incoming nonuniform and dilute
regime for 	max. We can consider the situation for which
the influence zone tends toward zero, which implies that the
angle �sl tends toward � /2 at a critical slope inclination c.
This asymptotic condition gives: � /2=a2c+b2. �sl may be
expressed as �sl=a2�−c�+� /2. When decreasing the incli-
nation angle , the angle �sl decreases until it reaches the
value �sl

c defined above for =max, which gives
�sl

c =a2�max−c�+� /2. Combining all these asymptotic con-
ditions, we obtain the following changes in �sl according to
the slope angle :

�sl� 
 max� =
�sl

c

max − min
� − min� , �17�

�sl� 	 max� = � �sl
c −

�

2

max − c
�� − c� +

�

2
. �18�

The values of the critical angles c and �sl
c will be dis-

cussed and determined later in the paper. In section �S2�, the
grains at the free surface have a velocity parallel to the free
surface and grains at the top of the obstacle �base of the
launching downstream jet� have a velocity parallel to the line
defined by the upstream dead zone. The angle � defined in
Fig. 5 can then be approximated by

� =
�sl + �zm

2
. �19�

Considering that the length of the dead zone formed up-
stream of the obstacle is identical to the length of the influ-
ence zone defined according to the free surface �length L of
the control volume in Fig. 5�, the angle �zm defined in Fig. 5
can be determined by the following implicit equation:

tan �zm =
tan �sl

1 +
h1

H
� �h

cos���sl + �zm�/2�
+ 1� . �20�

C. Variation in velocity and depth

Incoming flows encounter a local decreased slope created
by the dead zone upstream of the obstacle, which leads to a
decrease in velocity. The term �u defined in momentum con-
servation �Eq. �9�� is then smaller than one: �u=u2 /u1
1.
We do not have precise measurements of the velocity profiles
at section S2, which would allow us to test a possible theo-
retical prediction of �u based on the assumption of Bagnold
velocity profiles at sections S1 and S2. Future work is needed
in that sense. Here we simply propose an empirical law
based on the following statement: the larger the deflecting
angle �, the higher the expected velocity decrease is. Thus,
we simply assume that the relative velocity reduction is pro-
portional to the angle � :�u /u1= �u1−u2� /u1=��, where � is
a coefficient to be determined. This equation allows us to
quantify �u:

�u = 1 − �� . �21�

Let us note that the free-surface angle � is strongly cor-
related with the obstacle’s influence zone L: the larger �, the
longer L. We could have also proposed a simple relation
between �u and L. By mass flow rate conservation and as-
suming an unchanged density, the flow depth is increased
��h=h2 /h1	1� and can be approximated by

1/�h � 1 − �� . �22�

The � coefficient is a model parameter that will be dis-
cussed later.

D. Basal friction in the dead zone

The quantification of the basal friction �zm is a crucial and
nontrivial point. Let us note Tb the basal friction force. If we
consider grains at the base of the flow at section �S1�, these
grains are in movement and the basal friction force is known
according to Coulomb sliding condition: Tb= �tan �Py for
min

max �steady and uniform flows�. For slightly ac-
celerating flows at slopes inclinations larger than max, the
basal friction force Tb at section S1 is slightly smaller than
�tan �Py �positive flow-depth gradient in the x-axis direc-
tion�. If we consider motionless grains at the base of the flow
immediately upstream of the obstacle, the basal friction is
locally undetermined �the nonsliding condition gives:
Tb
�zmPy�. The basal friction �zm is then expected to vary
between a value equal to �� ���=tan  for steady and uni-
form flows and ��
 tan  for gradually accelerating flows�
at the beginning of the dead zone and a value which is less
and less determined when the obstacle is approached. For
simplicity reasons, the constant value that can be given will
be discussed below.

IV. NUMERICAL DATA COMPARED TO HYDRODYNAMIC
MODELING

A. Calibration

To compare the predictions of the proposed hydrodynamic
model to the data from discrete numerical simulations, we
need to validate the empirical laws proposed to close the
model and to determine the different parameters introduced
in the model.

An empirical law has been proposed for the prediction of
the angle �sl. Figure 6�a� gives the angle �sl versus the in-
clination angle . Each group is clearly described by a linear
fit and allows us to determine the coefficients ai and bi de-
fined previously. Identifying these coefficients to Eqs. �17�
and �18�, we can obtain the critical angles �sl

c and c. We
have both unknown parameters and four equations, giving
the following results: �sl

c �min and c�� /2. Equations �17�
and �18� can then be expressed as

�sl� 
 max� =
min

max − min
� − min� , �23�

�sl� 	 max� =
�

2
− � min − �/2

max − �/2���/2 − � . �24�

Figure 6�b� shows the angle �−�zm�, which corresponds
to the mean angle of the dead zone with the horizontal �see
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Fig. 5�, versus the slope inclination . �−�zm� is remarkably
close to min whatever the slope inclination. The angle �zm
can be approximated as follows: �zm�−min, instead of
using the implicit Eq. �20�. The prediction of Eqs. �23� and
�24� compared to the angle �sl estimated from numerical
simulations are also reported in Fig. 6�b�. The linear law
proposed to describe �sl is in quite good agreement with the
numerical data. The inset graph in Fig. 6�b� shows the nu-
merical angles compared to proposed predictions in terms of
�zm and �sl as a function of I. This plot is obtained by con-
sidering the value of the inertial number that the flow would
have in absence of obstacle at x /d=900, corresponding to
the position of the obstacle.

The relation −�zm=min gives a simple equation
�instead of Eq. �11�, which demands knowledge of �h and
�sl� to estimate the length L of the obstacle’s influence zone.
Indeed, we can consider that it is identical to the length of
the dead zone �as shown in Fig. 3�, which gives
L�H / tan�−min�. Figure 6�c� shows the prediction of the
latter equation compared to the length of influence measured
directly from numerical simulations. Predictions are satisfy-
ing regarding the simple assumptions made. L was estimated
graphically using the simulation pictures similar to the typi-

cal picture depicted in Fig. 3. It is the distance between the
obstacle and the section �S1� and coincides quite well with
the length of the dead zone represented by grains with a
velocity smaller than a threshold speed vt �see black colored
grains in Fig. 3�. This threshold velocity was typically cho-
sen equal to 5% of the depth-averaged velocity of the granu-
lar flow in absence of obstacle �vt�0.05ū�.

A second empirical law has been proposed to predict the
velocity ratio �u. It implies a � coefficient difficult to deter-
mine. � is expected to vary and display different behaviors in
the different flow regimes �dilute, dense, and quasistatic re-
gimes�. One approximation considers the value of � approxi-
mated from the dilute regime for which collisional interac-
tions are dominant. If the effects of the ambient fluid are not
considered, the only source of velocity reduction in the dilute
regime stems from collisions between grains and is expected
to be proportional to the restitution coefficient. Therefore, we
can assume that the u2 /u1 ratio scales as e in the dilute re-
gime. Furthermore, assuming that the length of the dead zone
tends to vanish in the dilute regime, it corresponds to a limit
angle � of � /2, giving the following limit condition accord-
ing to Eq. �21�: �u=e=1−�e�� /2�. The value of � is then
equal to �e= �1−e� / �� /2�=0.32 with e=0.5. Figure 6�d�

(b)(a)

(c) (d)

FIG. 6. �a� Free-surface angle �sl versus the slope inclination : numerical data and linear fits for both dense and dilute regimes. ��b�–�d��
Predictions from the empirical laws compared to numerical data. �b� Angles −�zm and −�sl versus the slope inclination ; inset graph:
angles �zm and �sl versus the inertial number I; �c� length of the influence zone upstream of the obstacle normalized by the obstacle height
L /H versus I; �d� depth ratio �h=h2 /h1 versus I �with �=�e=0.32�.
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shows the prediction of Eq. �22� with �=�e=0.32 compared
to the depth ratio h2 /h1 measured directly from numerical
simulations. The prediction from the simple law proposed for
the depth ratio �h is not perfect, but the order of magnitude
given by this �e value is satisfying regarding the crude as-
sumption made. The assumption of unchanged density prob-
ably has an effect on results. Density �2 at the top of the
obstacle �free boundary and granular jet at section S2� may
be smaller than density �1, which could explain why the flow
depth ratio is underestimated.

Another parameter in the model is the basal friction �zm.
We measured shear and normal basal stresses directly from
numerical simulations. Figure 7�a� shows the ratio between
basal shear and normal stresses �xy /�yy versus the position
x /d upstream of the obstacle �example for =26°�. Outside
of obstacle’s influence zone �−x /d	L /d with x
0 in Fig.
7�a��, the friction is close to �tan � as was expected, and it
decreases when approaching the obstacle with high fluctua-
tions close to the obstacle. The variation in �xy /�yy is non-
trivial. We interpolated all the curves by polynomial func-
tions, named P��x�, which allowed us to estimate an
averaged friction. �zm is estimated from the averaged value

obtained at a distance 1 /3L upstream of the obstacle:
�zm= P��x=−1 /3L�, with x
0 �Fig. 7�a��. It corresponds to
the position of the dead zone’s center of gravity assumed to
be triangular in shape. Figure 7�b� gives �zm versus I. The
values measured are relatively constant and found to be very
close to the value calculated from the minimum angle min,
which is also reported in Fig. 7�b�. In spite of the complex
force chains network inside the dead zone leading to high
fluctuations of the local basal friction �xy /�yy, it is possible
to consider a continuum approach and define an averaged
basal friction �zm equal to �tan min�. This value seems com-
patible with the observed geometry of the dead zone pro-
vided that the angle of the dead zone with the horizontal
�−�zm� is equal to min, as discussed above �see Fig. 6�b��
and shown again in the inset graph in Fig. 7�b�.

All the parameters are now determined, which allows us
to compare the predictions of the hydrodynamic analytical
model to the numerical data from discrete simulations in
terms of the force exerted on the wall.

B. Quantitative comparison

Figure 8�a� shows the normal force on obstacle Fn versus
the slope inclination  obtained from both the hydrodynamic
modeling approach and the data from discrete numerical
simulations. Figure 8�b� shows the same results in terms of
the rescaled force Fn /F0 versus the inertial number I, where
F0=F0

dyn or F0=F0
hydro. The analytical prediction is found to

be in very good agreement with the numerical data provided
the parameters discussed above: �=5 /4 �Bagnold-like veloc-
ity profile�, �e= �1−e� / �� /2� with e=0.5, and min=14°. We
proposed a constant value for � derived from the dilute re-
gime where collisions are dominant with a velocity reduction
scaling such as the restitution coefficient e. Even if � de-
pends on e and � also in the dense granular regime, the
results are satisfactory to describe the mean force in this
regime because �u and �h �depending on �� have only a
slight effect on the force estimation in this regime. The value
of k, representing the ratio of the normal stress �xx to the
normal stress �yy, was chosen equal to 1, which corresponds
to isotropic material conditions. A value derived from a
Mohr-Coulomb plasticity �49,57� does not provide a better
prediction, similar to the results from previous studies
�17,32�.

Figure 8�a� also reports the different contributions to the
normal forces given by Eq. �12�. At high inertial numbers I,
the contribution from the momentum term �Fdyn� is domi-
nant, proving an inertial regime. At low inertial numbers I,
the pressure term �Fpressure� and the difference between
weight and basal friction �Fweight−friction� become dominant
contributions. In the dense regime �0
 I
0.3–0.4�, Fig.
8�b� shows that the force scales like the hydrostatic force
F0

hydro but it is four times greater than F0
hydro. The contribu-

tion of the term �Fweight−friction� to the total normal force Fn is
dominant because of the large increase in length of the dead
zone, as shown in Fig. 6�c�.

An important result from discrete simulations, shown by
Fig. 4�a�, is that the tangential force Ft on the obstacle is
found to be close to zero whatever the slope inclination:

(b)

(a)

FIG. 7. �a� Time-averaged ratio between basal shear and normal
stresses �xy /�yy versus the position x /d �the position x /d is nega-
tive�: example for =26°; the dotted line gives the value of tan 
and the dashed line tan min. �b� Estimated values of �zm versus I
compared to the value tan�min�; inset graph: estimated values of
−�zm versus I compared to min.
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Ft�0. From Eq. �13�, we can estimate the reaction of the
bottom in the y-axis direction �Ry�. Figure 8�c� shows the
reaction of the bottom Ry versus the inertial number I. The
reaction Ry is strongly increased at low inertial numbers be-
cause −Py =�1gV0 cos  is very large �the influence zone up-
stream of the obstacle being very long�. This behavior is
proof of the transition toward the quasistatic regime and pre-
vents the occurrence of a steady flow regime when approach-
ing the angle min. In this quasistatic regime, the momentum
force in the y-axis direction is negligible and the reaction Ry
is equal to the weight of the material upstream of the ob-
stacle in the y-axis direction: ��1u1

2h1�u sin ��Ry =−Py. At
higher inertial numbers, there exists a critical value Ic for
which the reaction of the bottom Ry is equal to zero �see inset
in Fig. 8�c��, which indicates that the momentum force in the
y-axis direction is exactly balanced by the weight of the ma-
terial stored upstream of the obstacle in the y-axis direction.
Above Ic, the three contributions are balanced according to
Eq. �13� and Ry 
0. The fact that Ft is found to negligible
and the consequences it has on the prediction of the bottom
reaction Ry should be further studied by initiating experimen-
tal studies.

V. CONCLUSION

This paper has described the results on the mean force on
a vertical wall caused by free-surface dense granular flows
down an inclined plane. We presented numerical data from
2D spherical particle discrete simulations performed for a
wide range of slopes. The normal force on the obstacle was
characterized by high-frequency fluctuations with high am-
plitudes due to a fluctuating force chains network inside the
dead zone formed upstream of the wall. This paper has fo-
cused on the mean normal force. We considered a hydrody-
namic modeling approach based on momentum conservation
in a control volume. The analytical prediction was compared
to numerical data and quite accurately reproduced the behav-
ior of the force. Although the numerical simulations display
a more complex shape of the dead zone and the free-surface
upstream of the obstacle �particularly when approaching the
quasistatic regime�, we assumed a triangular shape for the
dead zone. These simple assumptions made to close the the-
oretical model provided good results. Indeed, the mean angle
of the dead zone and the length of the influence zone up-
stream of the obstacle were captured quite well by the simple
laws proposed. The predictions of the angle �sl and of the
variation in depth were not perfect and will need further
investigation. However, we believe that the hydrodynamic
analytical model proposed in this paper with simple empiri-
cal arguments to close the model is strikingly satisfying in
the sense that it is able to predict the exact order of magni-
tude of the mean granular force computed from discrete nu-
merical simulations if relevant values are provided for the
parameters needed in the model. All these parameters were
estimated from simple assumptions with no fitting processes.
We can conclude that the dynamics of the incoming
flow �u1, h1, and �1� and the granular material properties
�min=14°, k=1, �=5 /4, and e=0.5 here� made it possible to
estimate the mean steady granular normal force on a vertical

(b)

(a)

(c)

FIG. 8. �a� Normal force per unit width Fn versus the slope 
�with �=5 /4 and k=1�: analytical predictions compared to the nu-
merical data. We also reported the following contributions:
Fweight−friction, Fpressure, and Fdyn. �b� Rescaled force Fn /F0 versus I
from numerical simulations and from the hydrodynamic model. �c�
Reaction per unit width of the bottom Ry, from Eq. �13�, versus the
inertial number I. The y-axis component of the weight of the mate-
rial �Py� and the y-axis component of the momentum force
�−��1u1

2h1�u sin �� are also reported with �=5 /4. The inset is a
zoom on high I.
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obstacle for uniform incoming flows �min

max� but
also for gradually accelerated flows �	max�. Besides nu-
merical simulations showed that the mean tangential force
exerted on the wall is close to zero, which could initiate
future experimental studies. Beyond this analytical model,
this study provides a new example of the ability of hydrody-
namic modeling approaches to describe the mean macro-
scopic behavior �kinematics and depth-averaged force� of an
assembly of rigid grains. It has to be kept in mind that the
continuum model proposed in this paper has been developed
on the basis of stationary flow conditions �recirculating
flows� with an obstacle height close to the incoming flow
depth. Neither the force due to rapid granular flows imping-
ing high walls in the presence of an upward traveling shock
wave �29� nor the peak impact force due to a granular ava-
lanche front can be reproduced by the continuum model pro-

posed in this paper. Further investigations will be devoted to
the situation of dense granular avalanches �finite volume�
overflowing small planar obstacles, in order to see if the
continuum model is able to catch the force exerted by the
decelerating avalanche tail �after the occurrence of the peak
impact force�.
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